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Abstract

This paper presents the idea of analyzing and refining the
test data variance computation as a method to determine the
quality of TTCN-3 tests. TTCN-3 as the only internationally
standardized testing language is beeing used extensively by
industry. A large amount of functional test specifications
are written in this language. For this reason, a sensible is-
sue is the quality analysis of these specifications.

Data variance characterizes the test data distribution
over the test system interface. TTCN-3 template distance1

constitutes the criterion to quantify the variance: “similar”
and “different enough” test data.

Due to the high flexibility of the language, the stimuli
templates to be compared may not only contain concrete
values but also variables, function calls, parameters, val-
ues which are known at runtime only, etc. Therefore, we
combine Constraint Programming (CP) with static analysis
of TTCN-3 test suites targeting a realistic template solving.
We name template constraint an expression whose value (or
domain restrictions) can only be determined by looking at
the execution paths in the analyzed test behavior.

This method leads to a better computation of the data
distance and, thus, to a better refinement of similarity
classes. The approach is illustrated by an example which
shows how data varies when the distance is computed tak-
ing into account the template constraints.

1We call template all messages which appear in send statements. How-
ever, they can be variables, inline templates, templates returned by a func-
tion call, etc.

1 Introduction

With the advances of the complexity and dimensions of
the test specifications used in industry, assessing the test
quality, producing and identifying effective tests is a chal-
lenging task and debated subject in the research. In this
respect, a framework for analysing different quality aspects
of test specifications is provided in [19]. It proposes a qual-
ity model for test specifications derived from the ISO/IEC
9126 [6] quality model. Various test metrics have been al-
ready developed measuring selected aspects [12, 17, 18],
but they are still in their infancy or regard test quality as-
pects rather at programming language level than at test spe-
cific expectations.

In a previous work [16], an approach of how to evaluate
test effectiveness, the external quality aspect of a test spec-
ification, has been presented and applied to the Testing and
Test Control Notation (TTCN-3) [4]. According to [19],
three sub-characteristics describe the test effectiveness: test
coverage, test correctness and fault-revealing capability. In
practice, the test correctness and the fault-revealing capa-
bilities are very hard if not even impossible to determine.
However, the test coverage which is the measure of test
completeness on different levels can be obtained easier, e.g.
the extent to which a test specification covers system re-
quirements, system model, system code, etc. Hence, test
coverage can be analysed with the help of different metrics.
In white-box (structural) testing, testing code metrics such
as statement, branch coverage, etc. indicate the degree to
which the test specification covers the system code. In many
cases, only the system interfaces are available (e.g. black-
box testing), either provided as interface specification, doc-
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umentation or formally described. With the advances of
model-based system development, a model of the system is
provided as well. Consequently, black-box (functional) sys-
tem model coverage metrics are in use and usually adopted
from code coverage metrics, e.g.: state coverage, transition
coverage and alike.

TTCN-3 is based on concepts, which are independent of
any syntax such as test cases, test components, test ports. A
test case creates test components and connects them to the
SUT. The communication with the SUT takes place through
well-defined communication ports and an explicit test sys-
tem interface (TSI), which defines the boundaries of the test
system.

The TTCN-3 template mechanism provides the possi-
bility to specify, organize and structure test data in a very
comfortable way. A template either describes a concrete
value or specifies a subset of values of a given data type or
signature. Therefore, templates can be used to define con-
crete values to be transmitted or to describe conditions to be
matched by received values.

This paper discusses a metric already introduced in [16]
called TTCN-3 template distance. We aim at improving the
limitations of the original definition and reduce some of the
assumptions made initially. The distance has been defined
between two different TTCN-3 templates of the same type
using the following formula:

distanceT ′ : T ′ × T ′ → [0..1]
for v1, v2 6= omit : distanceT ′(v1, v2) = { 0≤d≤1 for v1 6=v2

0 otherwise

where d is computed according to Table 1 and Table 2

distanceT ′(v, omit) = { 0 for v=omit
1 otherwise

The distance metrics (yielding values between 0 and 1)
for basic types are defined as depicted in Table 1. The dis-
tance metrics for structured types (yielding values between
0 and 1 or the uncomparable value) are defined in Table 2.
These two tables have been taken over from our previous
paper.

* o-DED = One-Dimensional Euclidian Distance
** HD = Hamming Distance

Special cases such as omit value should be treated inde-
pendently of the general case of concrete values templates.
We considered the distance between every basic type and
omit value to be 1 (the maximum). The distance between
omit and omit is considered 0.

On this basis, the quantitative similarity of the test inputs
with respect to a specific message-based port that belongs
to the test system interface (TSI) can be derived. Hence, the

Table 1. Distance Metrics for Values of Basic
TTCN-3 Types

Basic
Type

Distance
based
on

Definition of distance d for values x
and y

Integer o-DED*
d(x, y) = |x−y|

sizeof(Integer)

Float o-
DED d(x, y) = |x−y|

sizeof(Float)

Boolean Ineq
d(x, y) = { 0 for x=y

1 otherwise

Bitstring HD** number of positions for which
the bits are different (the shorter
bitstring is extended into the longer
bitstring by filling it with leading
’0’B) divided by the longer length:
d(x, y) = d(x,y)

maxlength(x,y) with
d(x, y) = number of i where xi 6= yi

Hexstring HD same but with leading ’0’H
Octetstring HD same but with leading ’0’O
Charstring HD same but with leading ” ” (spaces)
Universal
Charstring

HD same but with leading ” ” (spaces)

coverage at the TSI level may be assessed by means of a
semantic similarity derived by using a partitioning method
of the stimuli space. To carry out quantitative estimates, i.e.
come to concrete values of the distance metrics, a template
solver method is required. This is mostly applicable for
the cases where complex tree-like structured templates (e.g.
record types) define the set of stimuli for a specific port, of
a specific TTCN-3 type. In the introduced approach, these
templates are subject of distance computation. Due to the
recursive definition of the template distance for structured
types (e.g. for record types we consider n-Dimensional Eu-
clidian Distance [10]), only the concrete values correspond-
ing to the fields of basic types are necessary.

* NDED = N-Dimensional Euclidian Distance
** HD = Hamming Distance

However, TTCN-3 semantic permits various ways to as-
sign values to templates or to fields of templates:

- direct values, i.e. integer, charstring values, etc.
- other variables
- user-defined function calls
- language specific function calls, e.g. valueof
- test case parameters
- module parameters
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Table 2. Distance Metrics for Values of Struc-
tured TTCN-3 Types

Structured
Type

Distance
based
on

Definition of distance d for values x
and y

Record N-DED*
d(x, y) =

√∑n
i=1(d(xi,yi))2

n

Record of HD**
d(x, y) =

∑n
i=1 d(x,y)

maxlength(x,y) with
d(x, y) = number of i where
d(xi, yi) > 1

3 and where the record
sequence is extended into the longer
record sequence by filling it with
leading omit

Set N-
DED

same as for record

Set of HD same as for record of
Enumerated Ineq

d(x, y) = |n(x)−n(y)|
n where n is the

sequentially numbered index of the
enumeration

Union -
d(x, y) = d(v(x), v(y)) =
{ 1 for v(x)=v(y)

0 otherwise

- expressions from simple ones to combination of the
afore possibilities

The metrics computation in a TTCN-3 test suite is
achieved along a static analysis process, that is, no run-
time values, elements, etc. are concerned, but the TTCN-3
test specification only. To come up with a number in the
interval [0..1] as a result of the calculation of the distance
metric between two messages instantiated using one of the
listed choices, a template distance algorithm has been pro-
vided. In the framework presented in [16] a set of limita-
tions and assumptions regarding the template solving have
been made. As an example, the maximum value 1 was at-
tributed to the distance, when one of its message could not
have been identified2, i.e. not a concrete value.

Obviously, these unreliable numbers will be propagated
further on affecting the partitioning sensitivity. Hence, we
applied known methods already imposed in white-box test-
ing, to TTCN-3 behaviors. One of these is symbolic ex-
ecution [8] which assumes that instead of supplying the

2Please note, that for a tree-like structured template, the identification
refers to either leaf nodes which are attributed “not identifiable” basic val-
ues or to children non-leaf nodes, depending on level of recursiveness in
the distance calculation

normal inputs to a program (e.g. numbers), one supplies
symbols representing arbitrary values within a specific do-
main or constrained values. In white-box testing, the sym-
bolic execution method uses the control flow graph (CFG)
of a program, which is a graph abstraction of the program,
and symbolically executes the program by selecting only
one execution path from the CFG. Tools such as the well-
known Java PathFinder (JPF)[9] have successfully adopted
this technique to prove the correctness of a program. An
example of this application is to check if every execution
of the program is feasible and does not lead to error states
or other violations, i.e. each path of its control flow graph
is verified. Following this method, we built first the CFG
associated to a testcase whose behavior encapsulates a se-
lected stimuli-message involved in the distance calculation.
Then a TTCN-3 symbolic values solver built with the help
of CFG and constraint programming methods (CP) targets
the domain reduction for a specific template field. The iden-
tified constraints upon template fields are further propagated
to the distance formula.

This paper is structured as follows. After reviewing the
related work in Section 2, the TTCN-3 data variance com-
putation method based on constrained templates and con-
straint propagation to template distances is discussed in
Section 3. An example is given in Section 4 and details of
our implementation are highlighted in Section 5. Our con-
clusions and the discussion of the next steps end the paper.

2 Related work

The contribution of this paper is motivated by the need
of refinement of the TTCN-3 distance metrics introduced in
[16]. The method described in that paper suffers from sev-
eral limitations which occurred as a result of a poor static
analysis approach along the computation algorithm. Hence,
we were motivated to investigate further domains such as
Symbolic Execution, Constraint Programming and to anal-
yse their possible integration with the existing work. Conse-
quently, we introduce next the basic notions regarding these
fields and how they have been employed so far in the testing
domain.

Similarity Measures

Data variance in general is investigated by inspecting the
proximity of objects. The survey in [7] presents how cluster-
ing facilitates the grouping of a given collection into mean-
ingful clusters (similar data points). Measurement of the
proximity (similarity) between data points is accomplished
through well defined partition clustering algorithms. Ex-
ample of direct utility of this field is statistical theory and
machine learning where the first step is pattern/data repre-
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sentation. In our study [16] this maps directly to the iden-
tification of the type and set of TTCN-3 templates forming
the space to be clustered. The next step is the definition of
the pattern/data proximity measures. As an example, Eu-
clidean distance [10] is the most referenced data proximity
metric; semantical distance function on pairs of words or
terms, entitled Google distance has been suggested in [3].

Symbolic Execution

Symbolic execution is a static analysis technique. In
software testing it was pioneered by King (1976) [8]. The
main idea of symbolic execution of a given program is to
exercise the program with abstract (symbolic) inputs rather
than with concrete ones. All computations of the program
affecting the inputs are not resolved to concrete results, but
are rather kept on an abstract level by using symbolic ex-
pressions. This implies that the program under considera-
tion is not actually executed, its execution is rather “simu-
lated” step by step. If a branching statement is encountered,
each of the possible branches is visited according to the cho-
sen strategy (depth-first, breadth-first, or others).

Figure 1. Control Flow Graph for the Listing 1

Listing 1. Code Exemple
1 a = read ( b )
2 c = 0
3 whi le ( pow ( a , 2 ) > 1) {
4 i f ( a > c )
5 c = c + a

6 a = a − 2
7 }

The example in Listing 1 shows a short sequence of code
instructions (including a loop and an if ). The associated
control flow graph is given in Figure 1. In this graph several
paths can be identified, e.g.:

p1 : (start)→ (1, 2)→ (3)→ (end)
p2 : (start) → (1, 2) → (3) → (4) → (6) → (3) →

(end)
To each path, a path condition which defines a constraint

on a (set of) variable may be associated. For instance, given
the path p : (start) → (1, 2) → (3) → (end), the related
path condition is |a| <= 1. For each path (a set of state-
ments), the symbolic execution delivers a set of constraints
(referred to as the constraint system) which a concrete in-
put must satisfy so that the path to the statement can be
traversed.

Constraint Programming

The concept of Constraint Programming (CP), detailed
in [1] has been subject of research in Artificial Intelli-
gence. Basically, a Constraint Satisfaction Problem (CSP)
is a problem composed of a finite set of variables, each of
which is associated with a finite domain, and a set of con-
straints that restricts the values the variables can simultane-
ously take. The task is to assign a value to each variable
satisfying all the constraints. Formally, we can describe it
as 〈X, D, C〉 where:

• X ={x1, x2, . . . xn}, the set of variables with domains

• D ={D1, D2, . . . Dn}, domains for each variable

• C ={c1, c2, . . . }, constraints restricting the values that
the variables can simultaneously take

A constraint is an expression that specifies some prop-
erty of a set of variables. For example, the constraint
x ≥ 1&&x ≤ 10 specifies that the value of the variable x
is between 1 and 10. Another familiar example constraint
is from the eight queens problem; it specifies that a chess
board contain eight queens such that no queen attack each
other. Constraint solving refers to the finding solutions to
constraints, i.e. assignments to the variables that make the
constraint expression true. For example, x = 3 is one solu-
tion for the first example constraint. Constraint solver often
use sophisticated local and global search techniques to find
one, several or all solutions to a given constraint.

Many researches ([2],[5],[20]) have explored the con-
straint solving technique and its applicability to testing. The
main idea relies on generating test-inputs from a desired
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property of the input domain expressed as a constraint, po-
tentially resulted automatically from the SUT model or code
by using constraint solving techniques.

3 Distance Computation Method
based on Constraints

Our approach relies on the fact that TTCN-3 language is
similar to a programming language. Hence, symbolic exe-
cution (SE) can be applied to its behavioral entities encap-
sulated in the test specifications.

Figure 2. Symbolic Execution and Testing in
current approaches

We put in contrast in Figures 2 and 3 the existing ap-
proach of applying SE versus our method. In the existing
approaches, the target is test data generation. We changed
the perspective, and, instead of supplying the SUT code to
the SE, we serve the SE with a TTCN-3 test behavior. This
way we aim at investigating the data variability in greater
detail than in the previous approach.

Figure 3. The Combination of SE & CP with
Test Specifications

We recall that the data variability is computed on top of a
template distance, which in turn is based on a template solv-
ing method. We apply SE and CP to improve the template
solving method. The algorithm consists of the following
steps:

1. start with the set of templates which stimulate the same
port belonging to the test system interface (TSI) and
having the same type

2. for each template from the template set identify the
TTCN-3 behavioral entity (e.g. testcase, function)

where the interested stimuli message, called target
template occurs, i.e. a statement p.send(¡message¿).

(a) build the control flow graph (CFG) for that spe-
cific behavioral entity (e.g. testcase, function).

(b) localize the target template (encapsulated in
p.send(¡message¿) statements) to a correspond-
ing node in CFG; this node is called target node.

(c) determine the path conditions for each path that
connects the CFG head with the target node.

i. identify the decisions blocks and derive the
constraints

ii. build a variable symbol table on a top down
manner which stores for each variable the
constrained domain

iii. apply the constraints on the variables direct-
ly/indirectly involved in the structure of the
target template

(d) expand the templates set with variations of the
target template as resulted from the different con-
straints on different paths.

3. apply the coverage algorithm defined in [16] on the re-
sulting template set

As result, the distance between two templates is calcu-
lated as the composition of the constraints associated to
each encountered variable in the template construction.

Formally, we represent it as follows. Given two message
stimuli (i.e. templates) tmpl1 and tmpl2:

– tmpl1 with the domain D1 = {D11, D12, . . . D1n}
corresponding to the elements of basic types composing
the template structure and with the associated constraints
C1 = {c11, c12, . . . c1n}

– tmpl2 with the domain D2 = {D21, D22, . . . D2m}
corresponding to the elements of basic types composing
the template structure and with the associated constraints
C2 = {c21, c22, . . . c2m}
⇒ the distance d(tmpl1, tmpl2) is characterized by a

new constraint derived from the two constraints C1 and C2.
The derivation is based on the distance formula provided in
[16].

The CFG Construction

For each TTCN-3 behavior entity, a CFG is constructed
as a representation of all paths that might be traversed dur-
ing test execution, by using a directed graph notation. The
construction of the CFG can be seen as a mapping of the
TTCN-3 statements to graph nodes.
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Table 3. CFG Block Types
CFG block Description
entry block block through which all control

flow enters the graph
exit block statement block block through

which all control flow leaves the
graph

simple block has one “in” edge and one “out”
edge

decision start
block

block which originates two or more
edges

decision end
block

block which marks the end of a de-
cisional block in a program

back block an edge that points to an ancestor in
a depth-first (DFS) traversal of the
graph

loop block the entry point of the loop

At the building of the CFG we considered the types of
nodes presented in Table 3

In the Table 4 we present the mappings rules considered
in our method. The left column represent the TTCN-3
statements which are mapped to their corresponding CFG
blocks in the second column. All listed statements regard
statements which may occur in a testcase. With respect to
limitations, for the moment statements such as defaults,
altstep etc are not yet considered. However, they are not
difficult to realize.

The TTCN-3 Template Constraint Solver

The ranges (the domain) a variable/template has at a spe-
cific node in a CFG are determined by updating its list of
constraints along a specific path. The list of path conditions
is obtained by analysing each node block belonging to that
path and by inspecting the associated TTCN-3 statement.
Usually, the constraints on variables appear in statements
like:

• assignment statements: The constraint given to the
left part of the assignment (e.g. a variable) can be a
either a concrete value or a composition of constrains
resulting by evaluating the right side of the assignment.

• if-conditions: The constraint applies to variables in-
volved in the if-conditions.

• alt guard conditions. The constraint applies to the
variables involved in the guard conditions.

Table 4. TTCN-3 Statements and their Control
Flow Graph corresponding blocks

TTCN-3 Statement CFG block
variable declaration (e.g.
var integer x;)

simple block

variable declaration with
assignment (e.g. var in-
teger x:=3;)

simple block

assignment operation
(e.g. x:=3;)

simple block

execution statements
(e.g. log;)

simple block

if/alt statement decision start block and de-
cision end block; in-between
further blocks are possible;
the number of edges leaving
the start block is equal with
the if/alt branches 3

while/for loop block and back block
repeat back block

• alt conditions: The constraint applies to the variable
specified in the receive statement in order to take the
value of the received message.

• condition statements in loops

The constraints of a variable may be propagated onto
other variables which are involved in expressions with it.
Therefore, it is necessary to analyse each particular state-
ment and keep track of all detected constraints.

4 An example

In this section, we show how to apply the introduced
concepts to a small TTCN-3 example. The SUT is a web
service with an interface which supports queries in a hotel
database, by specifying some parameters as city, min/max
price and the number of stars for the hotel.

The test suite defines the types presented in Listing 2. A
city is represented as an integer with values from 1 to 10 (i.e.
each city has a number), the price is defined as integer from
0 to 500 and the number of stars of a hotel is also an integer
from 0 to 5. Next, we defined two more types: RequestType,
for messages to be sent to SUT and a ResponseType for mes-
sages to be received from the SUT. A request contains the
city where the hotel should be searched, the range of prices
given as min and max prices and the number of stars for the
hotel. The response contains a boolean field called found
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to indicate whether a hotel has been found or not, and the
price of the hotel. When more than one hotel satisfying the
query is found, then the lower price is returned.

Listing 2. TTCN-3 Types Definition
1 modulepar Ci tyType mpCity := 1 ;
2
3 type i n t e g e r Ci tyType ( 1 . . 1 0 ) ;
4 type i n t e g e r S t a r s T y p e ( 0 . . 5 ) ;
5 type i n t e g e r P r i c e T y p e ( 0 . . 5 0 0 ) ;
6
7 type record Reques tType {
8 Ci tyType c i t y , P r i c e T y p e min ,
9 P r i c e T y p e max , S t a r s T y p e s t a r s }

10
11 type record ResponseType {
12 boolean found , P r i c e T y p e p r i c e }
13
14 t empla te ReqType reqTwoStarsTempl :={
15 c i t y := mpCity , min := 0 ,
16 max := 100 , s t a r s := 2 }
17
18 t empla te ReqType r e q F i v e S t a r s T e m p l :={
19 c i t y := mpCity , min := 0 ,
20 max := 100 , s t a r s := 5 }
21
22 t empla te RespType respFoundTempl :={
23 found := true , p r i c e := ? }
24
25 t empla te RespType respNotFoundTempl :={
26 found := f a l s e , p r i c e := ? }
27
28 type port P message {
29 out ReqType ;
30 in RespType ;
31 }
32 type component C {
33 port P p ;
34 t imer t := 1 0 . 0 ;
35 }

The test suite defines two testcases presented in Listing 3
and Listing 4. The first testcase tests if the SUT finds a ho-
tel with two stars cheaper than 100 euro. The testcase sends
the request template reqTwoStarsTempl and expects as re-
sult that the SUT returns a hotel with these constraints. Af-
ter sending the search request a timer is started in order to
validate that the SUT responds in an acceptable amount of
time.

Listing 3. Testcase 1
1 t e s t c a s e t 1 ( ) runs on C system C {
2 map ( s e l f : p , system : p ) ;
3 p . send ( reqTwoStarsTempl ) ;
4 t . s t a r t ;
5 a l t {
6 [ ] p . r e c e i v e ( respFoundTempl )
7 { s e t v e r d i c t ( pass ) ; }
8 [ ] p . r e c e i v e ( respNotFoundTempl )
9 { s e t v e r d i c t ( f a i l ) ; }

10 [ ] t . t imeout { s e t v e r d i c t ( inconc ) ; }
11 }

12 }

The second testcase tests that the SUT can find a ho-
tel cheaper than 100 euros with an arbitrary number of
stars. The test behavior starts with the sending of reqFiveS-
tarsTempl request which means that we search first for a
hotel of five stars with a maximal price of 100 euros. If no
such hotel is found, the tests decreases the number of stars
and tries again. This can repeate until the number of stars
is equal to 0 when the test stops with verdict fail. If in the
meantime a hotel is found then the tests stops with verdict
fail. The duration of each search operation is validated by a
timer.

Listing 4. Testcase 2
1 t e s t c a s e t 2 ( ) runs on C system C {
2 map ( s e l f : p , system : p ) ;
3 var ReqType vReques t :=
4 r e q F i v e S t a r s T e m p l ;
5 p . send ( r e q F i v e S t a r s T e m p l ) ;
6 t . s t a r t ;
7 a l t {
8 [ ] p . r e c e i v e ( respFoundTempl )
9 { s e t v e r d i c t ( pass ) ; }

10 [ ] p . r e c e i v e ( respNotFoundTempl )
11 { t . s t op ;
12 i f ( vReques t . s t a r s >= 1) {
13 vReques t . s t a r s := vReques t . s t a r s −1;
14 p . send ( vReques t ) ;
15 t . s t a r t ;
16 r e p e a t ;
17 }
18 e l s e { s e t v e r d i c t ( f a i l ) ; }
19 }
20 [ ] t . t imeout { s e t v e r d i c t ( inconc ) ; }
21 }
22 }

We apply now the afore described algorithm to this ex-
ample by starting with the template set identification; in this
case only one set exists since we used the same port type to
send requests, the same message type to the SUT and the
same TSI. The template set consists of the following tem-
plates:

(1) Set={reqTwoStarsTempl, reqFiveStarsTempl, vRe-
quest}

The first two templates are defined such that all fields
contain concrete values except the field city which is as-
signed the module parameter mpCity. This field has then
to be resolved by the template solver. The third message in
the set is a variable which is defined locally in the testcase.
This variable appears in the p.send statement (line 13, List-
ing 4). The content of the variable is alterated in line 2 (it
is initialized with the template reqFiveStarsTempl) and line
12 (the field stars is decreased) in Listing 4. Additionally, it
also appears in the decision statement on the line 11 where
the number of stars is compared with value 1.
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Figure 4. The CFG of testcase tc2

The next step is the distance computation which applies
to each pair of templates in the template set. The formulas
we need are:

(2) d(x, y) = |x−y|
sizeof(IntegerDomain)

(3) d(x, y) =
√∑n

i=1(d(xi,yi))2

n

Formula (2) is used to compute the distance between in-
teger based fields while formula (3) is used to compute the
distance between record based messages.

In the initial approach the distance that involves unre-
solvable values is assigned directly value 1 (maximal dis-
tance). This means:

(4) d(reqTwoStarsTempl, reqF iveStarsTempl) =
0.125,
which is lower than the 1

3 , the choosen threshold.
(5) d(reqTwoStarsTempl, vRequest) = 1, since the

vRequest is local testcase variable which has been not re-
solved.

(6) d(reqF iveStarsTempl, vRequest) = 1, again,
since the vRequest is local testcase variable which has been
not resolved.

According to the distances computed in (4)(5)(6) we ob-
tained two partitions:

(7) P1 = {reqTwoStarsTempl, reqF iveStarsTempl}, P2 =
{vRequest}

This leads to the conclusion that the coverage
is 2

3 . By applying the improved method, all tem-
plates and their fields can be entirely solved. The
d(reqTwoStarsTempl, reqF iveStarsTempl) remains
the same as before since all fields are known. But the
distances involving vRequest look different now since we
have to take into account the possible paths and for each
path compute the cumulated constraint. This will result into
an expandation of the vRequest into as many variations of
it as many paths exist in the CFG. The CFG for the testcase
tc2 is shown in Figure 4 (vReq appears in testcase tc2).

For simplification we considered the depth level of the
loops as 1. The paths in the example are:

path1: headCFG → map(. . . → vReq := . . . →
send(. . . → start . . . → alt → setverdict(pass) →
endAlt→ endCFG

path2: headCFG → map(. . . → vReq := . . . →
send(. . . → start . . . → alt → setverdict(inconc) →
endAlt→ endCFG

path3: headCFG → map(. . . → vReq := . . . →
send(. . . → start . . . → alt → stop → IF →
setverdict(fail)→ EndIF → endAlt→ endCFG

path4: headCFG → map(. . . → vReq := . . . →
send(. . . → start . . . → alt → stop → IF →
vReq.stars := . . . → send . . . → start → repeat →
Alt→ setverdict(pass)→ endAlt→ endCFG

path5: headCFG → map(. . . → vReq := . . . →
send(. . . → start . . . → alt → stop → IF →
vReq.stars := . . . → send . . . → start → repeat →
Alt→ setverdict(inconc)→ endAlt→ endCFG

path6: headCFG → map(. . . → vReq := . . . →
send(. . . → start . . . → alt → stop → IF →
vReq.stars := . . . → send . . . → start → repeat →
Alt → stop → IF → setverdict(fail) → EndIf →
endAlt→ endCFG

The template set will be expanded with the variations
of vReq for each path: vReq(Cpathi

), where i=1..6 and
Cpathi is the constraint regarding the path condition i upon
vReq variable. For instance, the constraint for Cpath6 is
{vReq := reqF iveStarsTempl, vReq.stars >= 1,
vReq.stars := vReq.stars− 1}.

This means, the resulting template set is:
Set = {reqTwoStarsTempl, reqF iveStarsTempl,

vReq(Cpathi
)}

However, the constraints along the paths 1..3 do not
change the initial value of vReq (which is reqFiveS-
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Figure 5. The Blocks Chain of the Implementation

tarsTempl) which implies that the distances between them
and reqFiveStarsTempl is 0. Similarly, the distances be-
tween the three templates and the reqTwoStarsTempl is
0.125, according to formula (4). All these distances are be-
low the threshold, therefore they belong to the same parti-
tion.

For the path 4..6 the field vReq.stars will become 4 due
to constraint vReq.stars := vReq.stars − 1. Hence, the
distance between
vReq(Cpathi and reqTwoStarsTempl, reqFiveStarsTempl
will be 1

12 , respectively 1
24 . Both of them are lower than

the threshold. Thus, all templates in the new template set
belong to the same partition.

In conclusion, the method based on constraint solving
lead to a better sensitivity of the partitions. This reveals in
fact that the data stimuli in the example is actually not that
good as found with the first method.

5 Implementation

In order to implement the introduced concepts, we ex-
tended the framework presented in our previous paper. That
framework is based on the TTworkbench [15] product, an
Eclipse-based IDE that offers an environment for specify-
ing and executing TTCN-3 tests. One of the main features
provided by this tool is the metamodel for the TTCN-3 lan-
guage.

Figure 5 summarizes the steps we follow to compute to
come out with the data variability for a TTCN-3 test suite.
Each step has a number which is refered in the following
explanations.

The first step is to use the TTworkbench metamodel fea-
ture to create a metamodel instance out of the TTCN-3 test
suite. To understand how this mechanism works we refer
to [11]. The instance of the metamodel is used in the sec-
ond step to create the CFG according to the algorithm pre-
sented in this paper. Additionally, the implementation sup-
ports also a graphical representation of the CFG’s logical
structure; the viewer is triggered for a specific selected test-
case in the editor. The most important step is to translate the
variables and the constraints to a CSP specific notation. We
experimented two Java based CSP libraries [13, 14]. We de-
cided to use jOpt [14] due to a larger flexibility in terms of
variables types, associated operations and constraint propa-
gation. In the fourth step, the CSP’s symbols table is used to
resolve the templates and continue with the algorithm pre-
sented in the approach.

Though not yet implemented, in the fifth step we forsee
the posibility to generate test data out of the data partition
information.
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6 Conclusions and outlook

After reviewing the main approaches in the field and the
existing technologies such as Symbolic Execution and Con-
straint Solving Problems, we endeavor their applicability
to TTCN-3 test specification targeting the test effectivness
analysis, particularly test coverage. The results show that
the method presented in this paper delivers much better re-
sults than the method introduced before in [16].

We demonstrated how the sensitivity of data partition is
affected when the distance metric takes into account the set
of the constraints upon a message and a specific test execu-
tion path. Throughout an example we shown the contrast
between the results obtained with the two methods but sev-
eral limitations have still to be treated (e.g. variable assigne-
ment with function calls).

In the end we gave details concerning the improvement
of our existing prototype tool to measure the data variabil-
ity for TTCN-3 test specification on top of a distance met-
ric. The extension regards a better strategy in resolving con-
straints upon variables in a test path execution according to
the CFG in static manner. We also demonstrated how CSP
tools have been succesfuly integrated with a TTCN-3 plat-
form.

In future work, the analysis will become more effec-
tive with the addition of a dedicated part targeting genera-
tion of missing test data as they result from the partitioning
method. Both symbolic execution and constraint program-
ming can be computationally very expensive. Complexity
analysis will definitelly improve the quality of the approach.
Additionally, another aspect of test effectiveness, namely
test correctness, can be approached with the same technol-
ogy: test execution path feasibility, association of a verdict
to each path, etc.
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